Finite element approximation of nonlinear elliptic problems with discontinuous coefficients
نویسندگان
چکیده
منابع مشابه
Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electro-magnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on th...
متن کاملA mortar element method for elliptic problems with discontinuous coefficients
This paper proposes a mortar finite element method for solving the two-dimensional second-order elliptic problem with jumps in coefficients across the interface between two subregions. Non-matching finite element grids are allowed on the interface, so independent triangulations can be used in different subregions. Explicitly realizable mortar conditions are introduced to couple the individual d...
متن کاملDiscontinuous Galerkin Finite Element Approximation of Nondivergence Form Elliptic Equations with Cordès Coefficients
Abstract. Non-divergence form elliptic equations with discontinuous coefficients do not generally posses a weak formulation, thus presenting an obstacle to their numerical solution by classical finite element methods. We propose a new hp-version discontinuous Galerkin finite element method for a class of these problems that satisfy the Cordès condition. It is shown that the method exhibits a co...
متن کاملOn the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
The successful implementation of adaptive finite element methods based on a posteriori error estimates depends on several ingredients: an a posteriori error indicator, a refinement/coarsening strategy, and the choice of various parameters. The objective of the paper is to examine the influence of these factors on the performance of adaptive finite element methods for a model problem: the linear...
متن کاملAdditive Schwarz methods for the Crouzeix-Raviart mortar finite element for elliptic problems with discontinuous coefficients
In this paper, we propose two variants of the additive Schwarz method for the approximation of second order elliptic boundary value problems with discontinuous coefficients, on nonmatching grids using the lowest order Crouzeix-Raviart element for the discretization in each subdomain. The overall discretization is based on the mortar technique for coupling nonmatching grids. The convergence beha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis
سال: 1990
ISSN: 0764-583X,1290-3841
DOI: 10.1051/m2an/1990240404571